دسته : References,همه

References

Adam, D. (2002). The counting house. Nature, 415, 726–729. Ahmed, S. R. (2004). Effectiveness of neural network types for prediction of business failure. Information Technology: Coding and Computing, 2, 455–459.
Berry, M. J. A., & Linoff, G. S. (2004). Data mining techniques second edition – for marketing, sales, and customer relationship management. New York: Wiley.
Berson, A., Smith, S., & Thearling, K. (2000). Building Data Mining Applications for CRM. New York: McGraw-Hill.
Bortiz, J. E., & Kennedy, D. B. (1995). Effectiveness of neural network types for prediction of business failure. Expert Systems with Applications, 9, 503–512.
Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., & Simoudis, E. (1996). Mining business databases. Communication of the ACM, 39(11), 42–48.
Broadus, R. N. (1987). Toward a definition of bibliometrics. Scientometrics, 12(5/6), 373–379.
Brossette, S. E., Sprague, A. P., Hardin, J. M., et al. (1998). Association rules and data mining in hospital infection control and public health surveillance. Journal of American Medical Informatics Association, 5(4), 373–381.
Cannataro, M., Talia, D., & Trunfio, P. (2002). Distributed data mining on the grid. Future Generation Computer Systems, 18, 1101–1112.
Casillas, J., & Martínez-López, F. J. (2009). Mining uncertain data with multiobjective genetic fuzzy systems to be applied in consumer behaviour modelling. Expert Systems with Applications, 36(2), 1645–1659.
Ceglowski, R., Churilov, L., & Wasserthiel, J. (2007). Combining data mining and discrete event simulation for a value-added view of a hospital emergency department. Journal of the Operational Research Society, 58(2), 246–254.
Chatfield, C. (1995). Model Uncertainty, Data Mining and Statistical-Inference. Journal of the Royal Statistical Society Series A-Statistics in Society, 158, 419– 466, Part: Part 3.
Chen, Y. H., Chen, C. Y., & Lee, S. C. (2010). Technology forecasting of new clean energy: The example of hydrogen energy and fuel cell. African Journal of Business Management, 4(7), 1372–1380.
Chen, Y. L., Chen, J. M., & Tung, C. W. (2006). A data mining approach for retail knowledge discovery with consideration of the effect of shelf-space adjacency on sales. Decision Support Systems, 42(3), 1503–1520.
Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6), 866–883.
Chen, Z., & Zhu, Q. (1998). Query construction for user-guided knowledge discovery in database. Journal of Information Sciences, 109, 49–64.
Cheng, P. S., & Chang, P. (1998). Transforming corporate information into value through data warehousing and data mining. ASLIB Proceedings, 50(5), 109–113.
Cheng, B. W., Chang, C. L., & Liu, I. S. (2005). Enhancing care services quality of nursing homes using data mining. Total Quality Management & Business Excellence, 16(5), 575–596.
Cheng, B. W., Luo, C. M., & Chen, K. H. (2006). Using data mining to evaluate patientoriented medical services for chronic senility outpatients. Quality & Quantity, 40(6), 1079–1087.
Cho, V., & Ngai, E. W. T. (2003). Data mining for selection of insurance sales agents. Expert Systems with Applications, 20(3), 123–132.
Chua, C. E. H., Chiang, R. H. L., & Lim, E. P. (2002). An intelligent middleware for linear correlation discovery. Decision Support Systems, 32, 313–326.
Coille, R. C. (1977). Lotka’s frequency distribution of scientific productivity. Journal of American Society for Information Science, 28, 366–370.
Dhar, V. (1998). Data mining in finance: Using counterfactuals to generate knowledge from organizational information systems. Information Systems, 23(7), 423–437.
Evans, S., Lemon, S. J., Deters, C., et al. (1997). Using data mining to characterize DNA mutations by patient clinical features. Journal of American Medical Informatics Association, 253–257. Supplement, Suppl. S.
Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996a). From data mining to knowledge discovery: an overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining (pp. 1–34). Cambridge, MA: AAAI Press.
Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996b). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27–34.
Feelders, A., Daniels, H., & Holsheimer, M. (2000). Methodological and practical aspects of data mining. Information and Management, 37, 271–281.
Fielitz, L., & Scott, D. (2003). Prediction of physical performance using data mining. Research Quarterly for Exercise and Sport, 74(1). A25-A25.
Fletcher, D., & Goss, E. (1993). Forecasting with neural networks: An application using bankruptcy data. Information and Management, 24(3), 159–167.
Flexer, A. (2000). Data mining and electroencephalography. Statistical Methods in Medical Research, 9(4), 395–413.
Forcht, K. A., & Cochran, K. (1999). Using data mining and datawarehousing techniques. Industrial Mamagement & Data Systems, 99(5–6), 189–196.
Glowacka, K. J., Henry, R. M., & May, J. H. (2009). A hybrid data mining/simulation approach for modelling outpatient no-shows in clinic scheduling. Journal of the Operational Research Society, 60(8), 1056–1068.
Gupta, D. K. (1987). Lotka’s law and productivity of entomological research in Nigeria for the period 1900–1973. Scientometrics, 12, 33–46.
Hajirezaie, M., Husseini, S. M. M., Barfourosh, A. A., et al. (2010). Modeling and evaluating the strategic effects of improvement programs on the manufacturing performance using neural networks. African Journal of Business Management, 4(4), 414–424.
Hand, D. J. (2000). Data mining – New challenges for statisticians. Social Science Computer Review, 18(4), 442–449.
Hayashi, Y., Hsieh, M. H., & Setiono, R. (2009). Predicting consumer preference for fast-food franchises: a data mining approach. Journal of the Operational Research Society, 60(9), 1221–1229.
Houston, A. L., Chen, H. C., Hubbard, S. M., et al. (1999). Medical data mining on the internet: Research on a cancer information system. Artificial Intelligence Review, 13(5–6), 437–466.
Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847–856.
Hui, S. C., & Jha, G. (2000). Data mining for customer service support. Information and Management, 38, 1–13.
Imms, M. (2004). Optimal database marketing – Strategy, development and data mining. International Journal of Market Research, 46(2), 259–261.
Ince, H., & Aktan, B. (2009). A comparison of data mining techniques for credit scoring in banking: A managerial perspective. Journal of Business Economics and Management, 10(3), 233–240.
Jiang, J., Berry, M. W., Donato, J. M., Ostrouchov, G., & Grady, N. W. (1999). Mining consumer product data via latent semantic indexing. Intelligent Data Analysis, 3, 377–398.
Kral, E. R. (1997). IBM research in interactive data mining and scientific computing. Behavior Research Methods Instruments & Computers, 29(1), 119–121.
Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. Communication of the ACM, 38(11), 54–64.
Lau, H. C. W., Wong, C. W. Y., Hui, I. K., & Pun, K. F. (2003). Design and implementation of an integrated knowledge system. Knowledge-Based Systems, 16, 69–76.
Lavington, S., Dewhurst, N., Wilkins, E., & Freitas, A. (1999). Interfacing knowledge discovery algorithms to large database management systems. Information and Software Technology, 41, 605–617.
Lee, C. S. (2007). Diagnostic, predictive and compositional modeling with data mining in integrated learning environments. Computers & Education, 49(3), 562–580.
Lejeune, M. A. P. M. (2001). Measuring the impact of data mining on churn management. Internet Research: Electronic Networking Applications and Policy, 11, 375–387.
Liao, S. H., Chen, J. L., & Hsu, T. Y. (2009). Ontology-based data mining approach implemented for sport marketing. Expert Systems with Applications, 36(8), 11045–11056.
Lin, F. Y., & McClean, S. (2001). A data mining approach to the prediction of corporate failure. Knowledge-Based Systems, 14, 189–195.
Lin, S. W., Shiue, Y. R., Chen, S. C., et al. (2009). Applying enhanced data mining approaches in predicting bank performance. A case of Taiwanese commercial banks. Expert Systems with Applications, 36(9), 11543–11551.
Liu, Y., & Schumann, M. (2005). Data mining feature selection for credit scoring models. Journal of the Operational Research Society, 56(9), 1099–1108.
Liu, D. R., & Shih, Y. Y. (2005). Integrating AHP and data mining for product recommendation based on customer lifetime value. Information & Management, 42(3), 387–400.
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–324.
Madigan, E. A., & Curet, O. L. (2006). A data mining approach in home healthcare: outcomes and service use. BMC Health Services Research, 6(18), 1–10.
Markowitz, H. M., & XU, G. L. (1994). Data mining corrections. Journal of Portfolio Management, 21(1), 60–69.
McSherry, D. (1997). Knowledge discovery by inspection. Decision Support Systems, 21, 43–47.
Moed, H. F., & Van Leeuwen, TH. N. (1995). Improving the accuracy of the Institute for Scientific Information’s Journal Impact Factors. Journal of the American Society for Information Science, 46, 461–467.
Nemati, H. R., Steiger, D. M., Iyer, L. S., & Herschel, R. T. (2002). Knowledge warehouse: an architectural integration of knowledge management, decision support, artificial intelligence and data warehousing. Decision Support Systems, 33, 143–161.
Ngai, E. W. T., Xiu, L., & Chau, D. C. K. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert Systems with Applications, 36(2), 2592–2602. Part 2.
Nicholls, P. T. (1989). Bibliometric modeling processes and empirical validity of Lotka’s law. Journal of American Society for Information Science, 40(6), 379–385.
Nicholson, S. (2003). Bibliomining for automated collection development in a digital library setting: Using data mining to discover web-based scholarly research works. Journal of American Society for Information Science and Technology, 54(12), 1081–1090.
Pao, M. L. (1985). Lotka’s law, a testing procedure. Information Processing and Management, 21, 305–320.
Pao, M. L. (1989). Concept of information retrieve. Colorado: Libraries Unlimited. Park, S. C., Piramuthu, S., & Shaw, M. J. (2001). Ynamic rule refinement in knowledge-based data mining systems. Decision Support Systems, 31, 205–222.
Potter, W. G. (1981). Lotka’s law revisited. Library Trends, 30(1), 21–39.
Potter, W. G. (1988). ‘Of Making Many Books There is No End’: Bibliometrics and Libraries. Journal of Academic Librarianship, 14, 238a-c.
Prinzie, A., & Van den Poel, D. (2005). Constrained optimization of data-mining problems to improve model performance. A direct-marketing application. Expert Systems with Applications, 29(3), 630–640.
Pritchard, A. (1969). Statistical Bibliography or Bibliometrics. Journal of Documentation, 25(4), 348–349.
Raghavan, V. V., Deogun, J. S., & Sever, H. (1998). Special topic issue: Knowledge Discovery and Data Mining – Introduction. Journal of American Society for Information Science, 49(5), 397–402.
Rao, I. K. R. (1980). The distribution of scientific productivity and social change. Journal of American Society for Information Science, 31, 111–122.
Salchenberger, L. M., Cinar, E. M., & Lash, N. A. (1992). Neural networks: A new tool for predicting thrift failures. Decision Sciences, 23, 899–916.
Shi, Y., Wise, M., Luo, M., & Lin, Y. (2001). Data mining in credit card portfolio management: A multiple criteria decision making approach. Multiple Criteria Decision Making in the New Millennium, Book Series: Lecture Notes in Economics and Mathematical Systems, 507, 427–436.
Smith, K. A., Wills, R. J., & Brooks, M. (2000). An analysis of customer retention and insurance claim patterns using data mining: A case study. Journal of the Operational Research Society, 51, 532–541
Su, C. T., Hsu, H. H., & Tsai, C. H. (2002). Knowledge mining from trained neural networks. Journal of Computer Information Systems, 42, 61–70.
Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural networks: The case of bank failure predictions. Management Science, 38, 926–947.
Trybula, W. J. (1997). Data mining and knowledge discovery. Annual Review of Information Science and Technology, 32, 197–229.
Tsai, H. H. (2011). Research trends analysis by comparing data mining and customer relationship management through bibliometric methodology. Scientometrics, 87(3), 425–450.
Tsai, H. H., & Chang, J. K. (2011). E-Commerce research trend forecasting: A study of bibliometric methodology. International Journal of Digital Content Technology and its Application, 5(1), 101–111.
Tsai, H. H., & Chi, Y. P. (2011). Trend analysis of supply chain management by bibliometric methodology. International Journal of Digital Content Technology and its Application, 5(1), 285–295.
Turban, E., Aronson, J. E., Liang, T. P., & Sharda, R. (2007). Decision support and business intelligence systems (8th ed.). Taiwan: Pearson Education. Van Raan, A. F. J. (1996). Advanced bibliometric methods as quantitative core of peer review based evaluation and foresight exercises. Scientometrics, 36, 397–420.
Van Raan, A. F. J. (2000). The Pandora’s box of citation analysis: Measuring scientific excellence, the last evil? In B. Cronin & H. B. Atkins (Eds.), The Web of Knowledge: A Festschrift in Honor of Eugene Garfield (pp. 301–319). New Jersey: ASIS Monograph Series.
Van Raan, A. F. J., & Van Leeuwen, TH. N. (2002). Assessment of the scientific basis of interdisciplinary, applied research. Application of bibliometric methods in nutrition and food research. Research Policy, 31, 611–632.
Vlachy, J. (1978). Frequency distribution of scientific performance. A bibliography of Lotka’s law and related phenomena. Scientometrics, 1, 109–130.
Wang, H. F., & Hong, W. K. (2006). Managing customer profitability in a competitive market by continuous data mining. Industrial Marketing Management, 35(6), 715–723.
Weingart, P. (2003). Evaluation of research performance: the danger of numbers. In: Bibliometric Analysis in Science and Research. Applications, Benefits and Limitations. Second Conference of the Central Library, Forschungszentrum Jülich. pp. 7–19.
Weingart, P. (2004). Impact of bibliometrics upon the science system: Inadvertent consequences? In H. F. Moed, W. Glanzel, & U. Schmoch (Eds.), Handbook on Quantitative Science and Technology Research. The Netherlands: Kluwer Academic Publishers.
Wilcox, A., & Hripcsak, G. (1998). Knowledge discovery and data mining to assist natural language understanding. Journal of American Medical Informatics Association, 835–839, Supplement, Suppl. S.
Wu, C. H. (2003). Data mining applied to material acquisition budget allocation for libraries: design and development. Expert Systems with Applications, 25(3), 401–411.
Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D. C. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross validation analysis. European Journal of Operational Research, 116, 16–32.
Zhang, D. S., & Zhou, L. (2004). Discovering golden nuggets: Data mining in financial application. IEEE Transactions on Systems MAN and Cybernetics Part C – Applications and Reviews, 34(4), 513–522.
Zhu, D., Premkumar, G., Zhang, X. N., et al. (2001). Data mining for network intrusion detection: A comparison of alternative methods. Decision Sciences, 32(4), 635–660.

دریافت اصل مقاله

مطالب مرتبط